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� ABSTRACT: Post-reproductive survival defines the position of any given species in the 
continuum from semelparity, a condition in which males die after one breeding season and 
females can survive for a second year, to iteroparity, a condition in which males have multiple 
mating opportunities over the length of their adult lives. Based on a capture-recapture study for 
open populations, it was previously described that a neotropic didelphid marsupial, the Brazilian 
gracile mouse opossum (Gracilinanus microtarsus) is partially semelparous, a condition in 
which mortality after the first mating is high but graded over time, with a fraction of males 
surviving for a second breeding season. Here we explore Bayesian change-point models for 
detecting a shift on the availability over time of the males in the field due to partial semelparity. 
Such methodology allows for more precise specification of the time when postmating begins. 

� KEYWORDS: Bayesian methods;⋅ change-point models; ⋅ MCMC; ⋅ semelparity ⋅ small 
mammals. 

1 Introduction 

Change-point identification is important in many data analysis problems, such as 
genetics, industrial quality control, signal processing and medical diagnosis. The main 
issue is to make inference about the location of one or more points of the data sequence at 
which there is a regime shift. A change-point model allows different parts of a dataset to 
obey different probability laws. For example, in DNA sequence data the observations 
along the sequence are expressed by the alphabet A, C, G or T. Suppose that there are 
regions or segments which follow the same or nearly the same statistical distribution, so 
that the entire DNA sequence data can be organized into homogeneous segments. 
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According to Braun and Muller (1998), the DNA segmentation problem can be put into 
the framework of the multiple change-point problem for categorical data. In quality 
control, Hawkins et al. (2003) used change-point models for detecting changes over time 
in the production process pattern. Jacqmin-Gadda et al. (2006) working with cognitive 
decline associated with the aging process proposed a change-point model to describe the 
time when the cognitive evolution of subjects in the pre-dementia phase becomes 
distinguishable from normal evolution. 

In this article we apply a Bayesian change-point model to describe partial 
semelparity of a neotropical didelphid marsupial, the Brazilian gracile mouse opossum 
(Gracilinanus microtarsus). Post-reproductive survival defines the position of any given 
species in the continuum from semelparity, a condition in which males die after one 
breeding season and females can survive for a second year, to iteroparity, a condition in 
which males have multiple mating opportunities over the length of their adult lives 
(Boonstra 2005). Martins et al. (2006a) estimated survival rates for G. microtarsus using 
Cormack-Jolly-Seber type models. Their results indicated that survival decreased sharply 
after the beginning of the breeding season although mortality is not complete and a small 
percentage of males may survive to a second breeding season, the reason why the G. 
microtarsus can be described as partially semelparous. The decrease in the male survival 
is reflected on their number of recaptures over time. During the premating period the 
number of recaptures is large, decreasing during the post-mating period. Such shift in the 
recapture process can be better understood when approached with the use of a change-
point model with a single change, since it makes possible to estimate more precisely the 
time when postmating begins. In the next section we introduce some Bayesian concepts to 
be used in the change-point model formulation. 

2 Bayesian background 

According to the Bayesian paradigm, the uncertainty about the true value of a given 
parameter, θ, is dealt with by considering θ as a random variable, so the rules of 
probability are used directly to make inferences about such parameter. Those inferences 
are based upon the posterior distribution of θ, P(θ | D), which is a function of a prior 
distribution, P(θ), which summarizes the prior probabilistic knowledge about θ, and the 
likelihood, L(D | θ), of the data D under some assumed model. Given the data D and the 
prior model, the Bayesian updating process of the information about θ involves the Bayes 
theorem as follows 
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The denominator of Eq. (1) is not a function of θ, since such parameter is summed 
up or integrated out over all its possible values. Therefore, the term in the denominator 
has no impact on the inferences about θ. Thus, the posterior distribution is usually 
described as being proportional to the likelihood times the prior distribution, i.e., 
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For some problems and some choices of priors, when the denominator of (1) can be 
evaluated, it may be possible to prove that the distribution of  (θ | D) follows a standard or 
known form, and the simulation process of it is, in most cases, straightforward. However, 
in general, the right hand side of Eq. (1) cannot be solved analytically, especially for high-
dimensional problems. Instead, computational techniques based on Markov Chain Monte 
Carlo (MCMC) algorithms make possible to draw samples from the posterior distribution 
in order to estimate θ. Based on those samples one can compute summary statistics like 
mean, median and quantiles, which help to characterize the posterior distribution of θ. 
More details about Bayesian estimation can be found in Gelman et al. (2003). 

The central idea behind the MCMC method is to build up a Markov chain that is 
easy to simulate and has target or equilibrium distribution given by the distribution of 
interest. For θ univariate the target distribution may be the posterior distribution itself. 
However, for multiparameter problems for which the sampling process from the joint 
posterior is generally very complex, a good strategy consists of obtaining approximations 
to some joint posterior components, as it is the case of the so called full conditional 
posteriors of the parameters in the model. The Metropolis-Hastings algorithm (Metropolis 
et al. 1953; Hastings 1970) is widely used for that purpose since it helps to create such a 
Markov chain with special properties that assure, in most cases, convergence to the target 
distribution. 

A special case of the Metropolis-Hastings algorithm is the Gibbs sampler. Each 
iteration of the Gibbs sampler cycles through the vector of parameters θ, which is divided 
into some subvector components. Each subvector is drawn conditionally on the value of 
all the others (through the mentioned full conditional posteriors). For a large number of 
Gibbs sampling cycles, the sampled values obtained are from the joint posterior 
distribution. 

Let θ=(θ1, …,θk ) be a k  dimensional vector, D  a vector of observed data and 
P(θ|D) be the corresponding joint posterior distribution. Let P(θj|D,θj-1) be the full 
conditional distribution of θj with θj-1 denoting the vector θ with θj removed. The 
following scheme illustrates the method. 

 
1. Choose starting values θ1(o), …,θk (o); 

2. Sample θ1(j+1) from P(θ1 | θ2(j),...,θ2(j),D); 

3. Sample θ2(j+1) from P(θ2 | θ1(j+1),θ3(j),...,θk(j),D); 
�  
4. Sample θk(j+1) from P(θk | θ1(j+1), θ2(j+1),…,θk-1(j+1),D); 

5. Repeat steps (ii) to (iv) thousands of times. 

 
An extensive discussion about the Gibbs sampler can be found in Casella and 

George (1992). 
The MCMC is started from an arbitrary initial state. The amount of time it takes to 

converge to its stationary or target distribution is called the mixing time or burn-in time. 
Once the chain has converged, it is “safe” to start collecting samples. Since the samples 
are correlated, it is common to pick a subset of them (say every 10th), a practice known as 
thinning. The sequence of simulations can be monitored using the software CODA (Best 
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et al. 1995), using both graphical and statistical methods to check mixing and 
convergence. The advantage of using a Bayesian approach is to obtain reliable and 
accurate credible intervals for the model parameters, especially for small sample problems 
since for the Bayesian methods there is no need of making any asymptotic assumption, as 
it is the case in most for non-Bayesian approaches. 

3 Poisson process with change-point  

A Bayesian model introduced by Carlin et al. (1992) for dealing with change-point 
problems considering a Poisson process is now described. Such methodology has been 
applied to the G. microtarsus data.  

Let y1,…,yn be a sample from a Poisson distribution in which one suspects there 
was a change point k along the observation process, k=1,…,n. When k=n that is 
interpreted as “no change”. Given k, the basic distributions involved in the model 
formulation are described as yi|θ ~ Poisson(θ), i=1,…,k  and yi|λ ~ Poisson(λ), 
i=k+1,…,n . Therefore, the likelihood is given by Eq. (2) 
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The forms of the priors for either λ or θ were chosen based on the conjugate prior 
property. A conjugate prior is a family of prior probability distributions that has the 
property that the posterior probability distribution also belongs to that family (Gelman et 
al. 2003).  

These priors were chosen by algebraic convenience, since we had no other possible 
criteria to describe them. However, it can be found in the literature several articles that use 
similar approach with respect to the prior specification. Thygesen and Zwinderman (2006) 
model the variance in SAGE (Serial Analysis of Gene Expressions) data using a 
hierarchical Poisson model with a gamma prior. Chien and Huang (2003) present a 
Bayesian speech duration modeling and learning for hidden Markov model (HMM) based 
on speech recognition with focus on sequential learning of HMM state duration. In order 
to exploit sequential learning they used a poisson duration model incorporated with 
gamma prior density. Rodrigues et al. (2001) estimated the number of species in a 
population using a hierarchical Bayesian model. The authors used a poisson-gamma prior 
distribution for the unknown number of species. 

In this present work we assumed, for simplicity, independent priors over k, θ, and λ 
such that k follows a discrete uniform distribution, i.e., k~uniform{1,…,n} and θ, and λ  
follow distinct  gamma  distributions  with  parameters a1 and b1, and a2 and b2, 
respectively, i.e.,  

θ~Gamma(a1, b1) and λ~Gamma(a2, b2). 
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The values of the hyperparameters a1, b1, a2 and b2 were fixed low (to be discussed 
in Section 4) in order to describe vague priors for λ and θ, since small values of theses 
parameters correspond to weak prior beliefs. However, it is possible to formulate a 
hierarchical Bayesian model by assigning distributions to the hyperparameters. It is also 
possible to specify some dependency structure between θ and λ by describing a bivariate 
joint prior distribution for θ and λ with a given variance-covariance matrix. However, in 
the present problem we have no previous knowledge, of any kind, that allows such 
specification.  

Considering the prior independence assumption among the model parameters, the 
joint posterior distribution involving the set of parameters (θ,λ,k) is given by expression 
(3) from which can be derived the full conditional posteriors of each parameter: 
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The full conditional posterior of θ  is given by 
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Therefore, the full conditional distribution of θ , likewise its prior, follows a gamma 
distribution,  

( )11111 ;~,,,, bkyagammabak k
i i ++� =Yλθ . 

Similarly, the full conditional distribution of λ  is given by  

( )knbyagammabak n
ki i −++� += 21222 ;~,,,, Yθλ . 

Finally, the full conditional posterior of k  is as follows: 
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Those full conditional distributions can be easily sampled using the Gibbs sampler 
scheme presented before to obtain samples from the joint posterior distribution of the 
parameters of interest. 

A change-point model is an especial case of the Hidden Markov Models (HMMs). A 
HMM is characterized by an unseen state process (which promotes shifts of some kind) 
often a finite state Markov process, and an observation process, a random function of the 
state. The observations are conditionally independent and identically distributed given the 



 Rev. Bras. Biom., São Paulo, v.26, n.4, p.31-44, 2008 36

state sequence. HMMs are special stochastic systems in which the transition from state to 
state, and state to observation, can be separately described. The estimation of the unseen 
state of a Hidden Markov Model is, in general, the target problem in applications, 
requiring the estimation of the unknown dynamics of the HMM. Some useful references 
about this sort of models are Churchill (1989), Rabiner (1989) and Rabiner and Juang 
(1993).  Such class of models allows for the description of multiple change points. 
However, these models are data hungry not being suitable for small data sequences.  

4 Data description 

According to Martins et al. (2006b), the Brazilian Gracilinanus microtarsus is a 
small (20-45 g), sexually dimorphic in size (females: 20-30 g; males: 30-45 g), short-lived 
(1-2 years), solitary, arboreal, nocturnal, insectivorous, and seasonally breeding 
Neotropical didelphid marsupial inhabiting the Atlantic rain forest and the highly seasonal 
cerrado biomes of southeastern Brazil. Using capture-recapture sampling techniques the 
G. microtarsus has been monitored in a cerrado remnant (about 73 ha) from August 2000 
to February 2003, with the period between January 2001 to February 2002 defining what 
they have called as Cohort 2000, and the period between December 2001 to February 
2003 as Cohort 2001. 

Capture-recapture data for Cohort 2000 are composed of 14 sampling occasions 
(months), of which 7 corresponded to the premating (January-July 2001) and 7 to the 
postmating period (August 2001-February 2002). For Cohort 2001, capture-recapture data 
are composed of 15 sampling occasions (months), of which 8 corresponded to the 
premating (December 2001-July 2002) and 7 to the postmating period (August 2002-
February 2003). However, the cutoff point that determined the premating and postmating 
periods have been chosen based on field observation and some subjective arguments. 

The data used in the change-point analysis are shown in Table 1. Based on these 
data, for Cohorts 2000 and 2001, the profiles described by the number mt of recaptures at 
time t for the males and females are displayed in Fig. 1. As it can be observed, for both 
cohorts, the females profiles are rather uniform as opposed to the males ones which 
presented a similar pattern for Cohorts 2000 and 2001, being first increasing till reaching 
a maximum point being then steadily decreasing. 

Table 1 - Number tm  of recaptures of males and females at time t  for Cohorts 2001 and 
2003 

Cohort 2000 (January/2001 to February/2002) 
Month jan feb mar apr may jun jul aug sep oct nov dec jan feb 

Females 0 3 3 2 2 3 1 1 2 3 5 1 1 1  

Males 0 3 4 6 5 6 5 8 3 4 2 1 1 1  

Cohort 2001 (December/2001 to February/2003) 
Month dec jan feb mar apr may jun jul aug sep oct nov dec jan feb 

Females 0 3 4 4 5 5 5 6 6 3 5 4 5 5 4 

Males 0 4 7 6 7 7 7 5 3 3 1 2 1 5 1 
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5 Results  

For the males data in Cohort 2001 some diagnosis details of the MCMC generated 
samples for the change-point variable k are presented. The convergence of the MCMC 
procedure was verified by Gelman and Rubin´s (1992), Heidelberger and Welch´s (1983), 
and Geweke´s (1992) convergence diagnosis techniques available in the software CODA. 

In order to perform the diagnostic, two sequences with 100,000 elements each were 
generated using the procedures described above. We also considered a burn-in of 10,000 
observations and thinning of 50 observations. Some sensitivity analyses for the 
parameters λ and θ are presented in Table 2. For such purpose, two sets of fixed values 
for the hyperparameters were considered for λ and θ respectively:  a1=1 and b1=1, and 
a2=1 and b2=1 and a1=0.5 and b1=0.5, and a2=0.5 and b2=0.5.  Such small values for 
those parameters describe vague priors for λ and θ.  

Table 2 - Summary of the MCMC diagnostics considering two chains of 100,000 
iterations each; thinning of 50 observations; burn-in of 10,000 observations and 
two sets of hyperparameter specifications – Cohort 2001 

Hyperparameter 
Maximum 

Autocorrelations 
Lag 50 

Heidelberger 
and Welch 

stationarity test 
in each of the 

chains 

Gelman and 
Rubin shrink 
factors (50% 
and 97.5%) 

Maximum of 
the absolute 

value of 
Geweke’s 
criterion 

λ (a1=1 ; b1=1) 0.057 passed 1.00; 1.00 0.512 
θ (a2=1 ; b2=1) 0.029 passed 1.00; 1.00 1.020 

k 0.059 passed 1.00; 1.00 0.540 
λ(a1=0.5;b1=0.5) 0.083 passed 1.05;1.02 0.773 
θ(a2=0.5;b2=0.5) 0.090 passed 1.00; 1.00 0.744 

k 0.0914 passed 1.02;1.03 0.178 
 
As one can observe from Table 2, considering lag of size 50, the autocorrelations 

are pretty low.  Each of the two chains passed in the Heidelberger and Welch’s 
stationarity test for all the parameters and choices of priors. Besides that, Gelman and 
Rubin’s shrink factors in each of the chains is around 1.00 for both the 50% and 97.5% 
quantiles of the sampling distribution for a scale reduction (shrink factor). According to 
Gelman and Rubin (1992) if both quantiles are approximately 1.0, effective convergence 
may be diagnosed. Geweke’s  maximum z-scores are very moderate providing no 
evidence against convergence for each of the parameters. Altogether, there is no evidence 
of lack of convergence.  

For one of the MCMC generated samples for the data in Cohort 2001, a graphical 
summary of the iterates for the change-point variable k and the other parameters is 
displayed in Fig. 2. The traces for each of the generated sequences are shown in the left 
hand side panels while the estimated density/distribution for each of the parameters are 
shown in the right hand side panels. A little bump can be observed in the posterior 
distributions of the parameters. As we already described from the diagnostic analyses 
presented above, those bumps do not cause any problem in the chain convergence.  
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The reason why the bump occurs is due to the way the data are collected rather then 
a real change in the biological regime of the recaptures at the beginning of the sampling 
occasions. The experiment initiates with no recaptures (that is why we have 0 frequency 
in January and in December of the Cohorts 2000 and 2001 respectively). Some animals 
are then captured, for the first time, say in January of 2000. Then, in February, there 
happen to be 3 animals recaptured. Such a jump in the recapture frequencies alone 
explains the little bump. When one removes the data from January of Cohort 2001, the 
result is an extraordinarily well behaved posterior distribution with no little bump (see 
Fig. 3). Such analysis represents only an exercise to allow for a better understanding of 
the impact of the first, null frequency, in the posterior distributions.  

Table 3 shows some summary statistics that help to characterize the posterior 
distribution of k and the other parameters for Cohort 2001.  Since the dataset available for 
analysis was very small, the posterior standard deviations were large as well as the width 
of the 95% credibility intervals that can be described by the 2.5% and 97.5% quantiles. As 
it can be observed, the mean and median (Bayesian point estimators considering a 
quadratic or absolute loss function, respectively) of k is around time k =10 (mode) for the 
males in Cohort 2001, meaning that a shift in the recaptures regime occurred in 
September of 2002. For the males in Cohort 2000 (see Table 4) the referred shift 
occurred around time k=11 (November of 2001). We observe from Tables 3 and 4 that 
inferences are reasonably insensitivity to the choice of the vague priors for λ and θ.  

Table 3 - Summary statistics characterizing the posterior distributions for the single point 
change-point model of the males in Cohort 2001 

Cohort 2001 Quantiles 
Hyperparameter  

mode mean s.d. 
2.5% 25% 50% 75% 97.5% 

λ (a1=1 ; b1=1) - 4.299 1.291 0.197 3.970 4.482 5.000 6.126 
θ (a2=1 ; b2=1) - 1.680 0.802 0.632 1.160 1.522 1.958 4.021 
k 10 8.821 2.566 1 8 9 10 12 
λ(a1=0.5 ; b1=0.5) - 4.484 1.393 0.078 4.142 4.703 5.268 6.426 
θ(a2=0.5 ; b2=0.5) - 1.763 0.843 0.615 1.206 1.597 2.078 4.135 
k 10 8.655 2.514 1 8 9 10 12 

Table 4 - Summary of the MCMC diagnostics considering two chains of 100,000 
iterations each; thinning of 50 observations; burn-in of 10,000 observations and 
two sets of hyperparameter specifications – Cohort 2001 

Hyperparameter 
Maximum 

Autocorrelations 
Lag 50 

Heidelberger 
and Welch 

stationarity test 
in each of the 

chains 

Gelman and 
Rubin shrink 
factors (50% 
and 97.5%) 

Maximum of 
the absolute 

value of 
Geweke’s 
criterion 

λ (a1=1 ; b1=1) 0.057 passed 1.00; 1.00 0.512 
θ (a2=1 ; b2=1) 0.029 passed 1.00; 1.00 1.020 

k 0.059 passed 1.00; 1.00 0.540 
λ(a1=0.5;b1=0.5) 0.083 passed 1.05;1.02 0.773 
θ(a2=0.5;b2=0.5) 0.090 passed 1.00; 1.00 0.744 

k 0.0914 passed 1.02;1.03 0.178 
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6 Discussion 

In this paper we have described a Bayesian change-point model aimed to estimate 
the time when the male’s recapture process suffered a shift due to G. microtarsus partial 
semelparity. Our goal was to obtain a model based, rather than a subjective determination, 
of the cutoff point between the premating and postmating periods. 

One of the most important motivations for using a Bayesian approach instead of a 
frequentist one is the fact that the Bayesian estimation of uncertainty (like variances and 
confidence intervals) is not based on asymptotic sampling arguments that requires the 
availability of larges samples. 

In this work we used independent prior for θ and λ. However, it is also possible to 
specify some dependency structure between those parameters by describing a bivariate 
joint prior distribution for θ and λ with a given variance-covariance matrix. A problem 
that looms larger is the complete lack of previous information, preventing us to specify 
any biologically reasonable model accounting for such dependencies. Since the sample 
sizes are too small, the posterior inferences could be seriously affected by the choice of a 
very informative prior. That would be even worse if such prior would represent a bad 
guess. Maybe in the future, when we have more data, we could do something about 
specifying prior dependencies among the parameters.  

Another limitation of the methods used in this work is the implicit assumption that 
the recaptures were independent. Unfortunately, again, the small amount of data available 
prevented the use of more complex models accounting for possible dependencies among 
the observations, such as Hidden Markov Models (HMMs), as well as the use of more 
parametrized models involving both males and females.   
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� RESUMO: A sobrevivência pós-reprodutiva define a posição de uma dada espécie, em uma 
escala de tempo contínua, que vai da semelparidade, uma condição em que os machos morrem 
após a primeira estação de acasalamento, enquanto as fêmeas sobrevivem para uma segunda 
ocasião de acasalamento, à iteroparidade, uma condição em que os machos têm múltiplas 
oportunidades de acasalamento no decorrer de suas vidas. Baseado em um estudo de captura-
recaptura para populações abertas, foi estabelecido que o gambá cuíca (Gracilinanus microtarsus) 
é parcialmente semélparo, uma condição em que a mortalidade, após a primeira estação de 
acasalamento, é alta, mas distribuída ao longo do tempo, com uma fração dos machos 
sobrevivendo a uma segunda estação de acasalamento. Neste trabalho utiliza-se um modelo 
Bayesiano de Ponto de Mudança  para detectar uma mudança de regime na disponibilidade dos 
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machos ao longo do tempo, devida à semelparidade parcial. Tal metodologia permite que sejam 
feitas especificações mais precisas sobre o inicio da ocasião de pós-acasalamento. 

� PALAVRAS-CHAVE: Métodos Bayesianos; modelos de ponto de mudança; MCMC; pequenos 
mamíferos. 
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Fig. 1  Profiles described by the number m_t of recaptures of males and females at time  for the Cohorts 2000 and 2001  
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Fig. 2  Graphical summary of the MCMC output for the model parameters - Male data in Cohort 2001  
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Fig. 3  Graphical summary of the MCMC output for the model parameters - Male data in Cohort 2001 - first time removed  
 


